?-احاطه گری در گراف ها

thesis
abstract

فرض کنید g گراقی از مرتبه n و فاقد رأس تنها باشد. زیر مجموعه s از رئوس گراف g را یک مجموعه ?-احاطه گر نامیم هرگاه برای هر رأس خارج از مجموعه s، داشته باشیم |n(v) ? s|?? |n(v)|.حال اگراین مسأله را برای تمام رئوس گرافل تعمیم دهیم مسأله جدیدی به نام ?-احاطه گری کلی بوجود می آید.همچنین در فصل های بعد این پایان نامه تأثیر حذف یک رأس و افزایش و کاهش یک یال را بر عدد ?-احاطه گری بررسی می نماییم و مفهوم جدیدی به نام گراف های بحرانی را تعریف کرده و آنها را دسته بندی می نماییم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

احاطه گری دلپذیر در گراف ها

زیر مجموعه¬ d از رئوس گراف g را یک مجموعه احاطه گر دلپذیر نامیم، هرگاه d دارای همسایه¬های یکسان در d باشند. کوچکترین اندازه یک مجموعه احاطه گر دلپذیر در گراف g را یک عدد احاطه گری دلپذیر g نامیده و آن را با fd(g) نشان می دهیم. یک مجموعه احاطه گر دلپذیر از اندازه fd(g) را به اختصار با fd(g)-مجموعه نشان می دهیم. در فصل اول این پایان نامه مفاهیم و مقدمات نظریه گراف که در فصل های بعد به آنها نیازمن...

15 صفحه اول

k-احاطه گری رومی در گراف ها

فرض کنید (g=(v,e گرافی با راس های v ویال های e باشد.یک تابع احاطه گری رومی روی گراف g تابعی به صورت {f:v(g)?{0,1,2است به طوری که برای هر راس u با f(u)=0، حداقل یک راس مانند (v?n(u وجود داشته باشد که f(v)=2 .وزن یک تابع احاطه گری رومی f برابر با (f(v)=? f(u است.عدد احاطه گری رومی گراف g که با r(g)? نشان داده می شود عبارتست از مینیمم وزن در میان وزن های توابع رومی ممکن روی گراف g. فرض کنید k یک ...

عدد احاطه گری رومی در گراف ها

احاطه گری رومی اولین بار توسط استوارت و ریول و رزینگ در سال های 1999و2000 معرفی شد و مورد توجه ریاضی دانان زیادی قرار گرفت . عدد احاطه گری رومی کاربرد زیادی در علوم کامپیوتر دارد. در این پایان نامه در فصل اول پس از بیان تعاریف مقدماتی به تعریف احاطه گری رومی و برخی خواص ان پرداخته و سپس عدد احاطه گری رومی را با عدد احاطه گری مقایسه کرده ایم . در فصل دوم به ارائه ماکسیمم و مینیمم برای |v0| و|v1|...

15 صفحه اول

نمایش برداری احاطه گری گراف ها

تابع گاما در سال ‎????‎ توسط آهارونی، برگر و مشولام معرفی شد. در حالت کلی محاسبه تابع گاما برای گراف های مختلف کار ساده ای نیست. کران های بالا و پایین برای این پارامتر داده شده است که با استفاده از آن ها مقدار دقیق تابع گاما برای درخت ها، مسیرها و دورها محاسبه شده است. هم چنین این تابع یک کران پایین برای همبندی همولوژیکی مجتمع مستقل گراف است و بنابراین مقداری برای مطالعه مسأله تطابق از طریق رو...

15 صفحه اول

نتایجی در خصوص احاطه گری رنگین کمانی در گراف ها

برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضی...

15 صفحه اول

مطالعه مفهوم احاطه گری در گراف ها فازی

مفهوم احاطه گری در گراف های فازی، هم از نظر تئوری و هم کاربردی، بسیار ارزشمند می باشد. در گراف فازی با مجموعه رئوس ، ، مجموعه احاطه گر فازی نامیده می شود هرگاه هر رأس ، توسط رأسی مانند احاطه شده باشد. در بیشتر مسائلی که تاکنون در مورد احاطه گری در گراف ها مطرح شده است، داده ها و اطلاعات مربوط به مسئله دقیق و مشخص است و وجود رأس ها و یال های گراف به صورت قطعی می باشد. در حالی که در دنیای واقعی م...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023